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SHALLOW WATER EQUATIONS ON A ROTATING ATTRACTING SPHERE

2. SIMPLE STATIONARY WAVES AND SOUND CHARACTERISTICS

UDC 532.5+533+517.9A. A. Cherevko and A. P. Chupakhin

This paper studies a model of shallow water on a rotating attracting sphere that describes large-scale
motions of the planetary atmospheric gases and World ocean water. The propagation of sound pertur-
bations on an equilibrium state is studied. The system of equations for bicharacteristics is integrated
in elliptic functions. A description of simple stationary waves is given. It is proved that there exist
two types of solutions (supercritical and subcritical ) describing gas motion in a spherical zone, so
that one of the boundary parallels is a source and the other is a sink. The obtained solutions are
interpreted as large-scale circulating cells in the atmosphere.

Key words: shallow water, motions on sphere, stationary solutions, propagation of sound per-
turbations, circulating cells.

INTRODUCTION

A model of shallow water on a rotating sphere describing large-scale motions in the planetary atmospheres
and World ocean is presented in [1]. It is assumed that the thickness of the layer of the incompressible continuous
medium (air or water) on the surface of a planet is small compared to the radius of the planet, and the motion
in the radial direction can therefore be ignored. As noted in [2], such assumptions are valid if rotation has a
significant effect on the motion of the medium. Motions with large time scales are considered. In addition, in the
case of large-scale geophysical motions, liquid particle trajectory deviate insignificantly from a sphere in the radial
direction.

1. FORMULATION OF THE PROBLEM

The proposed model coincides with the equations of gas dynamics on a rotating sphere for the polytropic gas
equation of state with an adiabatic exponent γ = 2 which describes motions on the surface of the sphere independent
of the radius r =

√
x2 + y2 + z2. The system of equations written in a noninertial system of coordinates rotating

together with the sphere at constant angular velocity Ω0 has the form [3]

Dv = w2 cot θ + r0w cos θ + (1/4)r2
0 sin θ cos θ − f0hθ,

Dw = −vw cot θ − r0w cos θ − f0(sin θ)−1hϕ, (1.1)

Dh + (sin θ)−1h(wϕ + (v sin θ)θ) = 0,
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Fig. 1. Formulation of the problem.

where D = ∂t +v ∂θ +(sin θ)−1w ∂ϕ is the total derivative over the surface of the sphere. Equations (1.1) are written
in spherical coordinates: 0 < θ < π is the latitude, 0 � ϕ < 2π is the longitude; v and w are the meridional and
longitudinal velocity components, and h > 0 is the depth of the layer. The positive directions are taken to be the
directions from north to south and from west to east. The dimensionless parameters r0 and f0 are linked to the
Rossby number R0 and Froude number F :

R0 =
V0

2a0Ω0
, F =

V0√
gH0

by the relations

r0 = R−1
0 , f0 = F−2.

Here V0 and H0 are the characteristic scales of the velocity component tangential to the sphere and the depth of
the layer, a0 is the radius of the sphere, and g is the acceleration due to gravity (Fig. 1).

The shallow water parameter ε = H0/a0 is assumed to be small compared to the parameters r0 and f0,
which, for the Earth, have the same order of smallness and, hence, rotation and gravitation have comparable effects
on the motion of the gas. A description of this motion is the main objective of the present work. A characteristic
feature of the model is the compact form of the solution manifold. In [1], infinite-dimensional transformations of the
equivalence of system (1.1) in the stationary case are constructed and solutions corresponding to the equilibrium
state and zonal flows along the parallels are presented. The problem of the propagation of sound perturbations
in the atmosphere for a gas-dynamic model was formulated by Ovsyannikov. In the present paper, we describe
sound characteristics on the equilibrium state and study stationary simple waves of system (1.1). We also note
papers [3, 4], in which the group properties of some models of atmospheric physics are studied and exact solutions
constructed using the symmetry groups admitted by these models are studied.

2. PROPAGATION OF SOUND PERTURBATIONS
ON THE EQUILIBRIUM STATE

Since system (1.1) is hyperbolic, the finite velocity of propagation of sound perturbations is of great signifi-
cance for applications. By virtue of the gas-dynamic analogy, this velocity is equal to the sound velocity c =

√
f0h.

Let the family of sound characteristics be given by the equations χ(t, θ, ϕ) = const. Then, for a given solution
u = (v, w), h, the function χ satisfies the equation [5]
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χt + vχθ + (sin θ)−1wχϕ = εcN (ε = ±1), (2.1)

where

N = |∇χ| =
(
χ2

θ + (sin θ)−2χ2
ϕ

)1/2

.

In this case, the sound perturbations propagate over the surface of a sphere of unit radius.
To derive the equations for the bicharacteristics of systems (1.1) for the given solution, i.e., the characteristics

of Eq. (2.1) that are curves in the space R
3(x) along which sound perturbations propagate (sound beams), we use

general data on the structure of the characteristics of first-order differential equations [6].
Equation (2.1) is the Hamilton–Jacobi equation for the function χ = χ(t, x1, . . . , xn) and is written as

χt + H(t, x1, . . . , xn, χ1, . . . , χn) = 0, (2.2)

where χi = ∂χ/∂xi (i = 1, . . . , n). The characteristic system for Eq. (2.2), which is also called the canonical system
of differential equations, is written as

dxi

dt
= Hχi ,

dχi

dt
= −Hxi (i = 1, . . . , n) (2.3)

and is a Hamilton system of equations with the Hamiltonian H .
Next, we use the following theorem.
Theorem 1 [6, pp. 115–116]. If, for the differential equation (2.2), the complete integral χ =

ϕ(t, x1, . . . , xn, a1, . . . , an) + a dependent on n + 1 parameters a, a1, . . . , an is known, then the equations

ϕai = bi, ϕxi = pi (i = 1, . . . , n),

where pi = χi, with 2n arbitrary parameters ai and bi leads to an implicit 2n-parameter family of solutions of the
canonical system of differential equations (2.3).

Let us study the sound characteristics and bicharacteristics of Eqs. (1.1) for some simple solutions.
The shallow water model (1.1) admits an equilibrium state on which the relative velocity components are

equal to zero (v = w = 0) and the following depth distribution holds:

h = α2
0(k

2
0 + sin2 θ). (2.4)

Here α2
0 = r2

0/(8f0), k2
0 = 8f0h0/r2

0, and h0 > 0 are constants. The sound velocity for this solution
c = (r0/2

√
2 )(k2

0 + sin2 θ)1/2. For θ ∈ (0, π), the equation

r = α2
0(k

2
0 + sin2 θ) (2.5)

in space R
3(x) defines a surface of revolution that characterizes a nonspherical equilibrium depth profile. The

equilibrium surface (2.5) is shown in Fig. 2 in [1].
Because equation (2.1) is homogeneous in the derivatives of the function χ and the equation of the family of

characteristics admits a scale transformation, it follows that, multiplying the function χ by a constant multiplier,
we bring the Hamiltonian H for Eqs. (2.1) to the form

H = (k2
0 + sin2 θ)1/2

(
χ2

θ + (sin θ)−2χ2
ϕ

)1/2

. (2.6)

Denoting Q = (k2
0 + sin2 θ)1/2, we have H = QN .

The Hamilton system (2.3) for the Hamiltonian (2.6) has the form

dθ

dt
=

Q

N
χθ,

dϕ

dt
=

Q

N

χϕ

sin2 θ
,

dχθ

dt
= − sin θ cos θ

QN

(
χ2

θ − k2
0(sin θ)−4χ2

ϕ

)
,

dχϕ

dt
= 0.

(2.7)

Because Ht = Hϕ = 0, the Hamilton system (2.7) has integrals H and Hϕ. The Hamiltonian (2.6) is reduced to the
Hamiltonian on the sphere by a change of variables. Indeed, the surface (2.5) of the equilibrium state is conformal
to the sphere since its metric has the form

dl2 = Q ds2,
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where ds2 = dθ2 + sin2 θ dϕ2 is the metric on a unit sphere. The conformal correspondence of two-dimensional
surfaces in the space R

3(x) can be implemented by two methods: by multiplying the metric by a nonzero multiplier
(in this case, by Q) or by a change of coordinates, which is a conformal transformation in the plane of a complex
variable that is a stereographic projection of the sphere. In the new variables α = α(θ, ϕ) and β = β(θ, ϕ), we have

H1 =
(
H2

α + (sinα)−2H2
β

)1/2

. (2.8)

The Hamiltonian (2.8) corresponds to the Hamilton system on the sphere. Hence, the problem of propagation of
sound perturbations on the equilibrium state (2.4) is conformally equivalent to the problem of the wave fronts on
a sphere [7].

The functions α(θ, ϕ) and β(θ, ϕ) are complex combinations of elliptic integrals, and transformation to the
variables (α, β) does not simplify the problem. In this case, the complexity of the problem lies in searching for and
studying the transformation (θ, ϕ) → (α, β) leading to a Hamiltonian of the form (2.8). The aforesaid suggests that
system (2.7) can be integrated in elliptic functions. For this, using Theorem 1, we represent the solution in implicit
form. We seek an integral χ of the equation of sound characteristics in the form

χ = −a0t − b0ϕ + g(θ),

where a0 and b0 are parameters; the function g is determined after its substitution into the Hamilton–Jacobi
equation (2.2) with the Hamiltonian (2.6.) The calculations yield

g(θ) = εσ0

θ∫

θ0

sin θ

√
1 − l20 sin2 θ

k2
0 + sin2 θ

dθ (ε = ±1), (2.9)

where

σ2
0 = a2

0 − b2
0k

2
0 > 0, l20 = (b0/σ0)2. (2.10)

The function g(θ) of the form (2.9) is represented as a combination of elliptic integrals. This expression is cumber-
some and is not given here.

The sound characteristics on the equilibrium state are given by the equations

∂g

∂a0
= t − t0,

∂g

∂b0
= ϕ − ϕ0. (2.11)

The constants θ0 and ϕ0 determine the point on the unit sphere which is the apex of the characteristic conoid
at t = t0.

After substitution of the function g in the form (2.9), (2.10), Eqs. (2.11) become

a0

|σ0|

θ∫

θ0

sin θ

√
k2
0 + sin2 θ

1 − l20 sin2 θ
dθ = t − t0,

b0

|σ0|

θ∫

θ0

sin θ(k2
1 + sin2 θ)

√
k2
0 + sin2 θ

1 − l20 sin2 θ
dθ = −(ϕ − ϕ0),

(2.12)

where k2
1 = (b0k0)2. The integrals on the left side of Eqs. (2.12) are expressed in the form of combinations of elliptic

integrals and are not given here because of their bulkiness.
The aforesaid leads to the following theorem.
Theorem 2. The sound characteristics of the shallow water model (1.1) on the equilibrium state (2.4) are

given implicitly by Eqs. (2.12) and are described by combinations of elliptic integrals.
During integration of the equations of bicharacteristics (2.3), it is necessary to specify the initial data

xi0 = xi(t0) and χi0 = χi(t0). Furthermore, the initial values of all derivatives χi0 = χi(t0) should be fitted to the
initial equation (2.2) and the equations of characteristics χ(t0, x10, . . . , xn0) = const. For the characteristic conoid
[the geometrical place of all bicharacteristics from the given point P0(x0) at t = t0] the solution of system (2.3)
defines a two-parameter family of curves which depends on the parameters λ and μ: r = R(t, λ, μ), θ = Θ(t, λ, μ),
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Fig. 2. Characteristic conoid with the apex located at the equator at small times (a, c, and e)
and large times (b, d, and f) of perturbation propagation in the absence of rotation (a and b), at
moderate rotation velocity (k0 > 0.37) (c and d), and at high rotation velocity (k0 < 0.37) (e and f).

and ϕ = Φ(t, λ, μ). Examining the perturbation propagation on the surface of the sphere, we obtain a one-parameter
family of curves Γ: θ = Φ(t, λ) and ϕ = Φ(t, λ).

Numerical Analysis of the Characteristic Conoid. From system (2.7), it follows that the form of the
characteristic conoid depends on the parameter k2

0 = 8f0h0/r2
0 and the parameters ϕ0 and θ0 which determine the

position of the apex of the conoid on the sphere. Since system (2.7) admits translation along ϕ, the parameter ϕ0

is insignificant.
The effect of the parameters k0 and θ0 on the formation of caustics is conveniently examined by observing

the conoid at large times of perturbation propagation similar to the moment of occurrence of singularities of the
perturbation front.

Rotation Effect. In the absence of rotation, if the depth of the liquid layer and the radius of the sphere are
fixed, the larger values of k0 correspond to lower rotation velocities. As k0 → ∞, the rotation velocity tends to
zero.
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a b

Fig. 3. Conoid with the apex located in the southern hemisphere: (a) top view;
(b) opposite side view.

We assume that the apex of the conoid is located at the equator. Then, in the absence of rotation, the liquid
depth over the entire sphere is constant and the bicharacteristics are large circles on the sphere. In this case, the
perturbation front is always a circle and converges at the point diametrically opposite to the apex of the conoid
(Fig. 2a and b). As the rotation velocity increases, the perturbation front is extended along the latitude. It should
be noted that, for k0 > 0.37, the caustics at the front due to intersection of the bicharacteristics are formed closer
to the poles (Fig. 2c and d), and at smaller k0 (i.e., at higher rotation velocities), they are formed at the equator
(Fig. 2e and f).

For k0 = 0, the equations for the bicharacteristics are integrable in elementary functions:

ϕ(t) = t/
√

C2
0 + 1 + ϕ0, θ(t) = arccot (sinh τ), χϕ(t) = χϕ0, χθ(t) = −χϕ0C0 cosh τ.

Here τ = (C0/
√

C2
0 + 1 )t + C1.

The two limiting cases confirm the behavior of the conoid described above.
Effect of the Position of the Apex of the Conoid. If the apex of the conoid is at the equator, the conoid is

symmetric about the equator. If the apex of the conoid is located in the southern hemisphere, the perturbation
front converges in the northern hemisphere (Fig. 3). This behavior of the bicharacteristics is natural since the
perturbation propagation velocity does not depend on the longitude ϕ and reaches the maximum value at the
equator.

3. SIMPLE STATIONARY WAVES

We consider the simple stationary waves described by system (1.1) in which the required functions v, w, and
h depend only on the latitude θ. In this case, Eqs. (1.1) reduces to the system of ordinary differential equations

vv′ = w2 cot θ + r0w cos θ + (r2
0/4) sin θ cos θ − f0h

′,

vw′ = −vw cot θ − r0v cos θ, (3.1)

vh′ sin θ + h(v sin θ)′ = 0,

where the prime denotes the derivative with respect to θ. System (3.1) can be integrated in finite form. This class
of solutions was first described in [8].

There are two types of solutions. In the solutions of the first type considered in [1], v ≡ 0, and in the
solutions of the second type, v �≡ 0.

We consider the solutions of system (3.1) in which v �≡ 0. In this case, the second and third equations (3.1)
are integrated to give the following representations for the velocity components:

v =
q0

h sin θ
, w =

w0

sin θ
− r0

2
sin θ (3.2)
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(q0 and w0 are integration constants). The Bernoulli integral for these solutions has the form

(v2 + w2)/2 + f0h − (r2
0/8) sin2 θ = b0, (3.3)

where b0 = const. Substitution of representations (3.2) into (3.3) yields a algebraic equation of the third degree for
the depth:

h3 − αh2 + β = 0. (3.4)

Here

α =
1

2f0

(
κ0 − w2

0

sin2 θ

)
, β =

q2
0

2f0 sin2 θ
, κ0 = 2b0 + w0r0. (3.5)

Solution of Eq. (3.4) yields the depth profile h = h(θ); substitution of the obtained value of h into representations
(3.2) for v yields the velocity vector. Thus, the solution of the problem of simple stationary waves reduces to
analysis of Eq. (3.4). According to (3.5), β > 0. Since, according to the physical meaning, h > 0, from (3.4) it
follows that α > 0. Then, according to (3.5), κ0 > 0.

Let us determine the number of real positive roots of Eq. (3.4). The discriminant of Eq. (3.4) is equal to [9]

Dh = β(27β − 4α3).

Hence, because β > 0, it follows that for D1 = 27β − 4α3 < 0, Eq. (3.4) has three real roots, and for D1 > 0, it has
one real root, and the equation D1 = 0 gives the discriminant curve which defines multiple roots.

According to the Viéte theorem and because β > 0, the product of the roots of Eq. (3.4) is negative and
the sum is positive since α > 0. Consequently, one real root is always negative. Hence, the version D1 > 0 can be
discarded since it does not lead to physically meaningful solutions.

Equation (3.4) has the sign signature of the coefficients of the form (+ − +), and, hence, according to the
Descartes theorem [9], it can have two positive real roots, which is possible for D1 < 0. After some calculations, we
obtain

D1 = − κ
3
0

2f3
0 s3

P (s), (3.6)

where s = sin2 θ,

P (s) = s3 − 3(λ0 + μ0)s2 + 3λ2
0s − λ3

0. (3.7)

The coefficients of polynomial (3.7) have the form

λ0 = w2
0/κ0, μ0 = 9f2

0 q2
0/κ

3
0 . (3.8)

From (3.8) it follows that λ0 > 0, μ0 > 0. According to (3.6), D1 < 0 for P (s) > 0. The discriminant of the
equation P (s) = 0 is equal to

DP = 27μ2
0λ

3
0(4μ0 + 9λ0)

and is positive for any λ0 > 0, μ0 > 0 (see (3.8)). Hence, the equation P (s) = 0 has only one real root. The sign
signature of the coefficients of this equation has the form (+ − +−). In this signature there are three changes of
sign and, hence, according to the Descartes theorem, it has one or three positive roots. Only the first case can take
place. In addition, since s = sin2 θ < 1, θ ∈ (0, π), this positive root s∗ should be in the interval (0, 1), which is
provided by the inequalities

P (0) = −λ3
0 < 0, P (1) = (1 − λ0)3 − 3μ0 > 0. (3.9)

The first of these inequalities is satisfied automatically, and the second defines the admissible region Γ of parameters
in the plane R

2(λ0, μ0).
The interval I = (θ∗, π − θ∗), where sin θ∗ = s∗, corresponds to the case D1 < 0; hence, in this interval,

Eq. (3.4) has two real positive roots h1 = h1(θ) and h2 = h2(θ). The functions h1 and h2 can be written by the
Cardano formulas [9], but this representation is not effective for the analysis of the solution.

In the space R
3(λ0, μ0, θ), the region of existence of positive roots of Eq. (3.4) is given by the inequal-

ity P (s) > 0:

sin6 θ − 3(λ0 + μ0) sin4 θ + 3λ0 sin2 θ − λ3
0 � 0. (3.10)

434



l0

p

o

m0
0.5

1.0

0.25
0

0.50

Fig. 4. Region of existence of positive roots of Eq. (3.4).

Inequality (3.10) defines a bounded closed surface in the space R
3(λ0, μ0, θ) (Fig. 4). For the points inside this

surface, the strict inequality (3.10) holds and there are two different positive roots h1 and h2. For the points
belonging to the surface P = 0, a single multiple positive root exists. This surface is the discriminant surface in
the space R

3(λ0, μ0, θ). The concrete parameters λ0 > 0 and μ0 > 0 of the flow correspond to the point P0(λ0, μ0).
The segment of the perpendicular from the point P0 in the region P > 0 corresponds to the spherical zone I, and
the point of intersections of the perpendicular with the surface P = 0 define the boundary parallels Γi: θ = θi

(i = 1, 2), where θ1 = θ∗ and θ2 = π− θ∗. These curves are components of the discriminant curve L = {Γi, i = 1, 2}
on the sphere. All sections of the surface P = 0 by the planes θ = const are similar.

The aforesaid leads to the following conclusions.
A solution of the form (3.2), (3.4) exists only for some values of the parameters λ0 and μ0 given by inequalities

(3.9).
The gas flows corresponding to solutions of the form (3.2), (3.4) are defined in a certain spherical zone

I symmetric about the equator.
The zone I can be arbitrarily wide except in the regions having the shape of small disks on the poles of the

sphere.
For the admissible fixed values of the parameters λ0 and μ0, two types of flow exist corresponding to two

different positive roots h1 and h2 of Eq. (3.4).
For the same width of the zone I, i.e., for a fixed value of θ∗, there are different flows defined by various sets

of parameters λ0 and μ0.
It remains to clarify the physical meaning of the discriminant curves which are the boundaries of the range

of the solution.

4. SOUND CHARACTERISTICS FOR SIMPLE STATIONARY WAVES

We seek the sound characteristics of the stationary equations (1.1) for solutions of the form (3.2) and (3.4).
Let these characteristics be given on the sphere by the family of curves χ(θ, ϕ) = const. Then, the function χ

satisfies the equation

vχθ + (sin θ)−1wχϕ = εcN1, (4.1)

where N1 = (χ2
θ + (r sin θ)−2χ2

ϕ)1/2; c =
√

f0h ; v, w, h is a solution of (3.2) and (3.4).
We write the equation of the characteristics resolved for the longitude: χ(θ, ϕ) ≡ ϕ − f(θ) = const. Then,

Eq. (4.1) reduces to the equation
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af ′2 − 2bf ′ + k = 0, (4.2)

where

a = (v2 − f0h) sin2 θ, b = vw sin θ, k = w2 − f0h.

Equations (4.2) belong to the class of implicit differential equations [10] (usually less accurately referred to as the
equations unresolved for the derivative). The main salient feature of these equations is the nonuniqueness of the
solution and the fact that the solutions are defined only in a certain region whose boundary is the solution branching
manifold. It should be noted that investigation of problems of transonic gas dynamics has initiated the development
of complete theory of such equations [11].

Equation (4.2) is studied simply enough. For a �= 0, it is resolved in the form

f ′ =
vw ± √

f0h(v2 + w2 − f0h)
(v2 − f0h) sin θ

. (4.3)

The region of the solution of Eq. (4.3) is given by the inequality

v2 + w2 > f0h, (4.4)

which describes the region of hyperbolicity of the initial stationary system (1.1) for the given solution. Using the
Bernoulli integral (3.3), we obtain

v2 + w2 = 2b0 + (r2
0/4) sin2 θ − 2f0h. (4.5)

Comparing (4.4) and (4.5), we find the hyperbolicity condition of the form

h < 2(b0 + (r2
0/8) sin2 θ)/(3f0). (4.6)

If inequality (4.6) is satisfied, the flow is supercritical; otherwise, it is subcritical. Taking into account the presence
of the two flow regimes (3.2) and (3.4) corresponding to the roots h1 and h2, and the form of these roots, we can
draw the following conclusion. The smaller root h1 > 0 of Eq. (3.4) corresponds to supercritical (supersonic) flow,
and the larger root h2 to subcritical (subsonic) flow.

Equation (4.2) is degenerated for a = 0, i.e., for v2 = f0h. In this case, it describes sound characteristics
of the form θ = θ0, which are parallels on the sphere. Thus, there are two types of sound characteristics for
solutions of the form (3.2), (3.4). This conclusion follows from the general theory of implicit differential equations,
namely, from the Cibrario theorem [10]. The parallels θ = θi specify the discriminant curves on the sphere which
define the boundaries of the region of the solution. Each point P of such a curve is the origin of a pair of sound
characteristics (4.3) which form a rostrulum — a singularity of the type of Neil’s semicubical parabola — at the
point P .

It can be proved that the discriminant curve L = 0 specifies sound characteristics on the sphere. The
equations of the discriminant curve L = 0 are given by

h3 − αh2 + βh = 0, 3h2 − 2αh = 0. (4.7)

For h �= 0, the second equation in (4.7) implies that α = 3h/2. Substituting this expression into the first equation in
(4.7), for the boundary parallels Γi we obtain h = (2β)1/3, which coincides with the solution of the equation v2 = f0h,
which specifies sound characteristic of the form θ = θi.

We calculate the derivative h′ at the points of the discriminant curve:

h′ =
α′h2 − β′

3h(h − 2α/3)
→ ∞ at h → 2α

3
. (4.8)

According (4.8), on the boundary parallels L = {Γi, i = 1, 2}, which are components of the discriminant curve L,
solution (3.2), (3.4) undergoes a gradient catastrophe. By virtue of the Bernoulli integral (3.4), the functions v,
w, and h are bounded. The boundedness of the derivative (4.8) can be treated as the presence of a source and a
sink on the parallels Γi: the depth h increases with distance from the curve Γ1, beginning at a certain value and,
in contrast, it decreases to this value in a small vicinity of the parallel Γ2 (Fig. 5).

Thus, the boundaries Γi of the spherical zone I in which solution (3.2) is defined, (3.4) are sound character-
istics. One of these parallels, for example, Γ1 is a source for the given flow, and the second Γ2 is a sink.
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Fig. 5. Typical depth profile on the sphere: solid curves refer to super-
critical flow; and dashed curves to subcritical flow.

5. DESCRIPTION OF GAS MOTION

The equation of the flow streamlines

dθ

v
=

sin θ dϕ

w

for solution (3.2), (3.4) reduces to the form

ϕ =
1
q0

θ∫

θ0

h(θ)(w0 − (r0/2) sin2 θ)
sin θ

dθ, (5.1)

where (0, θ0) is the starting point on a boundary parallel, for example, Γ1 that is the origin of the streamline (5.1).
By virtue of the rotational symmetry of the solution, any stream line is obtained from the streamline (5.1) by its
rotation though the angle ϕ0. Figure 6 gives the flow patterns obtained by numerical integration of Eq. (5.1) for
various values of the parameter r0/(2w0).

The presence of two solutions corresponding to the two roots h1 and h2 of Eq. (3.3) allows the solution to
be constructed in the form of a cell. Motion, for example, supercritical motion (the smaller root h1) starts from
the parallel of the source Γ1 and ceases on the parallel Γ2 corresponding to the sink. In turn, the parallel Γ2 is
the source for the subcritical flow corresponding to the larger root h2; in this case, the gas moves in the opposite
direction flowing into the sink located along the parallel Γ1.

For w0 > 0, a feature of the solution is that the circumferential velocity components w can vanish on some
parallels θ = θ0 and π − θ0 symmetric about the equator. According (3.2), this occurs for 2w0/r0 < 1 for values of
θ0 that are solutions of the equation

sin θ0 =
√

2w0/r0. (5.2)

If Eq. (5.2) has a solution, the circumferential velocity component changes sign in passing through the parallels
θ = θ0 and π − θ0, and the flow direction along the longitude is reversed (from west to east or vice versa).

6. FORMATION OF TWO SPHERICAL ZONES

In the limiting case where the parameter μ = r0/b0 is small, the region of the solution can be divided into
two spherical zones.

Omitting the term with μ2 in the Bernoulli integral (3.3), we obtain

v2 + w2 + h = 1.
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Fig. 6. Streamlines for the subcritical regime (a, c, and e) and supercritical regime (b, d, and f):
r0/(2w0) = 0.9 (a and b), 1.1 (c and d), and 1.5 (e and f).

Retaining the former notation of the functions under the assumption that the corresponding stretching has already
been performed, we obtain the following representations for the velocities:

v =
v0

h sin θ
, w =

w0

sin θ
+ β0 sin θ.

Equation (3.4) becomes

h3 −
(
1 −

( w0

sin θ
+ β0 sin θ

)2)
h2 +

v2
0

sin2 θ
= 0. (6.1)

In the space R
3(v0, w0, θ), the inequality

−64 sin6 θ + (432v2
0 + 192w2

0) sin4 θ − 192w4
0 sin2 θ + 64w6

0 + (192w0 sin6 θ − 384w3
0 sin4 θ + 192w5

0 sin2 θ)β0

+ (48 sin8 θ − 288w2
0 sin6 θ + 240w4

0 sin4 θ)β2
0 + (−96w0 sin8 θ + 160w3

0 sin6 θ)β3
0

+ (−12 sin10 θ + 60w2
0 sin8 θ)β4

0 + (12w0 sin10 θ)β5
0 + (sin12 θ)β6

0 < 0 (6.2)
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Fig. 7. Surface S for various values of the parameter β0: (a) β0 < βk
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0 < β0 < βc
0.

defines the region of existence of two real positive roots of Eq. (6.1) [an analog of the region given by inequality (3.10)
in the space R

3(μ0, λ0, θ)]. In this case, the following statement plays an important role.
Lemma 1. The replacement w0 → w0 − (β0/2) sin2 θ reduces inequality (6.2) to the inequality

−4 sin6 θ + (27v2
0 + 12w2

0) sin4 θ − 12w4
0 sin2 θ + 4w6

0 < 0.

The same inequality is obtained from (6.2) by setting β0 = 0.
The geometrical meaning of Lemma 1 is as follows: in the space R

3(v0, w0, θ), the region of existence of the
solution for a rotating sphere is obtained from the region of existence of the solution for a motionless sphere by a
shift of the sections θ = const along the axis w0 under the law specified in the lemma. In this case, the poles θ = 0
and θ = π remain motionless.

Let v0 �= 0 and w0 < 0. As the parameter β0 increases, the shape of the surface S given by equality (6.2)
changes:

1) for small values of β0, the spherical zone I is enlarged with increasing β0;
2) for some value of β0 = βk

0 , the surface S becomes nonconvex in the θ direction;
3) with a further increase in the parameter β0, the flow region breaks up into two spherical zones I1 and I2

located in different hemispheres symmetrically about the equator;
4) next, as the values of β0 increase, the spherical zones I1 and I2 are shifted toward the poles and their

width decreases. For a certain critical value of the parameter β0 = βc
0, the zones disappear and the model ceases to

work.
Figure 7 shows the surface S for various values of β0.
A solution in the form of a circulating cell was constructed in Sec. 5. In the presence of two zones in different

hemispheres, for which the solution is defined, it is possible to construct flow in the form of symmetric circulating
cells (Fig. 8).

Such pairs of cells model the Hadley and Ferrel cells and polar cells [12] which are large-scale (planetary)
flows providing atmospheric air circulation, predominantly in the meridional direction. From the region of the
equator, where the pressure is lowered, air moves to the region of tropics with a higher pressure (to north and
south for the northern and southern cells, respectively). Once a certain maximum pressure is reached, oppositely
directed flow arises, in which the pressure decreases in approaching the equator. Rotation leads to deviation of the
streamlines from the meridional direction. In the shallow water model, these two flows can be imagined as occurring
at different depths. Indeed, from the analysis of the characteristics (see Sec. 4), it follows that supercritical flows
are defined for smaller h and subcritical flows for greater h. Thus, for the equatorial cells, there is supercritical
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a b

Fig. 8. Symmetric circulating cells: (a) side view; (b) view from the pole.

gas flow to the north in the lower sublayer of the cell and subcritical flow in the opposite direction in the upper
sublayer.
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